Опыты с медным купоросом в домашних условиях. Опыты с медной проволокой. Веселые химические опыты дома Опыты с сульфатом меди

Однажды в Интернете я увидел видеоролик о том, как с помощью шести лимонов можно зажечь электрическую лампочку. Суть опыта заключалась в следующем. В лимон вставлялись медная проволока и железный гвоздь. Затем медная проволока одного лимона соединялась с помощью провода с гвоздем другого лимона и так далее, пока все шесть лимонов не будут соединены между собой. Мультиметром измеряли напряжение, оно оказалось равным около 6 вольт. Цепь замыкали с помощью электрической лампочки, которая загоралась. Я заинтересовался этим фактом и решил проверить, действительно ли это так. Собрав точно такую же цепь, я измерил напряжение. У меня получилось 2,8 вольт, то есть почти в 2 раза меньше, чем в видеоролике. Я стал искать причину и в одной из книг прочитал, что вместо железного гвоздя можно использовать цинковую пластинку , которую можно получить из батарейки. Заменив железный гвоздь на цинковую пластину, я получил напряжение 5,8 вольт (ПРИЛОЖЕНИЕ I). Тогда я выдвинул гипотезу : напряжение, которое вырабатывается с помощью лимона, зависит от того, какие металлы используются. Эту гипотезу я решил проверить с помощью ряда опытов.

Цель моей работы – экспериментально проверить, как зависит напряжение в лимоне от используемых металлов.

Задачи:

1) Подобрать пару металлов, между которыми в лимоне возникает напряжение;
2) Измерять возникающее напряжение с помощью мультиметра;
3) Отразить полученные результаты в виде схемы, таблицы или графика.

Лимон с вставленными в него различными металлами является простейшей батарейкой, так называемым гальваническим элементом. С помощью батарейки можно зажечь лампочку, за счет батарейки работают многие устройства, которые использует человек: плеер, пульт дистанционного управления, детские игрушки. Как можно изготовить батарейку в домашних условиях, чтобы хотя бы на короткое время заменить вышедшую из строя? В этом я вижу актуальность своей работы.

Из истории создания батарейки

Первую батарею изготовил в 1800 году Алессандро Вольта . Она состояла из набора цинковых и медных дисков, разделенных кусками бумаги, пропитанными соляным раствором. Диски укладывались один на другой в виде столба. Соединив медным проводом первый диск из цинка с последним медным диском, Вольта получил ток в результате химической реакции между медью, цинком и соляным раствором. Чем больше размер пластинок, тем больше тока они пропускают. С увеличением числа медных и цинковых пластинок, проложенных бумагой, растет и напряжение. Как только соль в растворе истощалась, электрический ток исчезал. Таким образом, Вольта открыл, что электрический ток возникает между двумя разными металлами, если эти металлы находятся в соответствующем контакте между собой . В честь ученого с 1881 года единица измерения напряжения называется “вольт” (В) .

У Алессандро Вольта не было приборов для измерения тока и напряжения. Он пользовался собственным языком. Чтобы проверить, заряжена ли батарейка, можно коснуться языком контактов: почувствуется пощипывание. Так же поступал и Вольта. Он пропускал ток по языку и отмечал более или менее кислый вкус .

Самые распространенные в настоящее время – цинково-угольные батареи, они самые дешевые. У отрицательного полюса находится цинковый стаканчик, у положительного – угольный стержень, а в качестве электролита между ними применяют раствор едкого калия. По мере использования батареи цинковый стаканчик растворяется, и батарея в конце концов выходит из строя.

Устройство батарейки

Батареи превращают химическую энергию в электрическую, постепенно вырабатывая свой ресурс. Процесс этот необратим. Только аккумуляторы можно перезаряжать до тысячи раз. В автомобилях применяются свинцовые аккумуляторы. Аккумулятор состоит из двух свинцовых электродов, между которыми находится электролит – кислота. Аккумулятор питает энергией стартер: он нужен, чтобы завести мотор. Заряжается аккумулятор за счет генератора во время движения .

В моем опыте с лимоном железо (или цинк) выпускает электроны, а медь принимает их. Железо (или цинк) называют неблагородным металлом, а медь – благородным. Лимон используется как электролит – содержащаяся в нем лимонная кислота проводит ток между железом (или цинком) и медью. Стоит соединить металлы, и по ним потечет ток .

Изучение зависимости напряжения в лимоне от используемых металлов

Для своих опытов я попросил маму купить в магазине лимонов. Металлами я воспользовался теми, которые оказались наиболее доступными: цинковую полоску вырезал из корпуса батарейки, железо – гвоздь, медь получил из медного провода, предварительно удалив с него изоляцию, полоску алюминия отрезали из коллекции демонстрационного материала “Алюминий и его сплавы”, олово – из набора для паяния. Свинцовая проволока нашлась у руководителя. Всего я взял 6 металлов (ПРИЛОЖЕНИЕ II). Пробовал проводить опыты с серебром и золотом в ювелирных украшениях, но мультиметр показывал нулевые значения. Учитель мне объяснил, что опыт не удается потому, что ювелирные украшения изготовлены из сплавов.

В лимон воткнул медную проволоку. В качестве второго металла поочередно брал железо, олово, алюминий, свинец, цинк. Комбинацию металлов отразил в схеме:

Варианты комбинации металлов

У каждой пары металлов измерял напряжение. Полученные результаты занес в таблицу:

Из таблицы видно, что между двумя различными металлами возникает разное напряжение. Руководитель объяснил мне, что выбранные мною металлы можно расположить в ряд: Al, Zn, Fe, Sn, Pb, Cu, который так и называется “Ряд напряжений металлов”. Чем дальше в этом ряду находятся металлы друг от друга, тем большее напряжение возникает между ними. Вот почему когда я заменил железный гвоздь на цинковую пластинку, напряжение увеличилось почти в 2 раза.

Я решил проверить, действительно ли напряжение между металлами зависит от их положения в ряду напряжений металлов.

Из схемы видно, что в каждом ряду (Sn – Cu, Fe – Cu, Zn – Cu, Al – Cu) напряжение увеличивается. Таким образом, напряжение между металлами зависит от их положения в ряду: чем дальше металлы расположены друг от друга, тем больше между ними напряжение.

Выводы

При выполнении данной работы я узнал много нового и интересного:

1. Познакомился с устройством батарейки.
2. Узнал, что некоторые фрукты, например, лимоны могут создавать напряжение, достаточное для того, чтобы зажечь маломощную лампу.
3. Металлы в химии называются на латинском языке.
4. Металлы расположены в ряд, который называется “Рядом напряжений металлов”.
5. Чем дальше друг от друга в этом ряду расположены металлы, тем большее напряжение возникает между ними.

Библиографический список

1. Большая книга экспериментов для школьников/ Под ред. Антонеллы Мейяни; Пер. с ит. Э.И. Мотылевой. – М.: ЗАО “РОСМЭН-ПРЕСС”, 2006
2. Ди Специо М. Занимательные опыты: Электричество и магнетизм/ М. Ди Специо; Пер. с англ. М. Заболотских, А. Расторгуева. – М.: ООО “Издательство АСТ”: ООО “Издательство Астрель”, 2004
3. Научные эксперименты дома. Энциклопедия для детей/ Пер. с нем. П. Лемени-Македона. – М.: Эксмо, 2012
4. Яковлева М.А. Веселые научные опыты для детей и взрослых. Опыты в комнате/ Мария Яковлева. – М.: Эксмо, 2013

Которые можно провести с детьми. Начните знакомство с волшебным миром кристаллов прямо сейчас!

В домашних условиях можно вырастить кристаллы почти всех солей, но начинать лучше с технологически простых материалов. К ним относятся поваренная соль, сахар, бура и медный купорос. Из него получаются самые крупные и красивые кристаллы синего цвета. Выращивать их легко, в то же время это очень интересный и познавательный процесс. Наша статья поможет пошагово вырастить кристалл медного купороса дома.

Что понадобится

Медный купорос

Приобрести можно в любом садово-хозяйственном магазине. Он продается пачками по 100 грамм. Голубой цвет хозяйственного купороса говорит о невысокой степени очистки. Кристаллы из него получаются светлее.


Медный купорос невысокой степени очистки

Сульфат меди можно приобрести и в специализированных лабораториях. Из такого купороса вырастет темно-синий кристалл, похожий на драгоценный камень.

Емкость для рабочего раствора

Посуду используют стеклянную, так как другие материалы вступают в химическую реакцию с раствором. Отлично подойдет поллитровая банка с широким горлышком. После опыта категорически запрещается использовать ее в пищевых целях.

Основа для кристаллизации

В качестве основы применяют тонкую шерстяную нитку синего или черного цвета. Взрослый кристалл полупрозрачен, и основа не должна испортить результат. Альтернативой может быть тонкая , предварительно зачищенная наждачной бумагой.

Вода

Если в опыте вы используете медный купорос из хозяйственного магазина, воду нужно будет прокипятить. Для эксперимента с очищенным купоросом используют дистиллированную воду.

Средства защиты

Купорос токсичен, и работать без перчаток с ним нельзя. На детей младшего школьного возраста желательно надеть медицинскую маску.

Карандаш или палочка для закрепления основы

На ней вы подвесите нитку, на которой будет расти кристалл.

Прозрачный лак для ногтей

Одноразовая пластиковая ложка

Важно! Работа проводится только под наблюдением взрослых. По окончании процесса руки необходимо тщательно вымыть под проточной водой. Нельзя пробовать кристалл или порошок на вкус. В случае попадания медного купороса в глаза их нужно промыть большим количеством воды.

Как сделать кристалл: этапы работы

Рабочий раствор высокой концентрации

В воду, нагретую примерно до 80 градусов, по ложке добавляем медный купорос. Жидкость приходится постоянно помешивать, чтобы порошок полностью растворился. Важно поддерживать постоянную температуру воды, в этом может помочь водяная или песчаная баня. Если сульфат меди перестал растворяться и оседает на дне, значит, раствор готов. В среднем на 300 мл воды уйдет 200 грамм вещества.


Кристалл-затравка

Переставляем емкость с горячим раствором на охлаждающую поверхность и ждем, пока жидкость остынет до комнатной температуры. Это нужно, чтобы началось выпадение мелких кристалликов. Процедив раствор через марлю, рассмотрим кристаллики и выберем самый крупный и правильный по форме. Его мы используем в дальнейшем как затравку.

Среда для выращивания кристалла

Сцеженный раствор повторно нагреваем на водяной бане, вновь доводя его до перенасыщенного состояния. Если получаемый в результате осадок не растворился, повторим очистку. Привяжем затравку и поместим в банку так, чтобы нитка была расположена вертикально, не задевая дно и стенки емкости.Для этого привязываем нитку к карандашу, а сам карандаш фиксируем на горлышке, например, пластилином. вы найдете подробную инструкцию и научное описание этого эксперимента.

Рост кристалла

Накрываем посуду тканевой салфеткой и оставляем на семь дней в неподвижном состоянии. Статичность конструкции - обязательное условие для начала формирования кристалла. Через неделю можно заметить, что нитка обросла мелкими кристалликами размером от миллиметра, а затравка увеличилась приблизительно на 1 см. Чем крупнее кристалл, тем быстрее он растет. Когда результат устроит, просушите кристалл и покройте его лаком - он защитит изделие от белого налета при хранении и придаст ему дополнительный блеск.

Из этого опыта дети узнают, как и почему растут кристаллы, и полюбят делать научные открытия.

Опыты с медной проволокой

С медью можно поставить несколько любопытных опытов, поэтому посвятим ей особую главу.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, - оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: СuСО 3 *Сu(ОН) 2 (основной карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит.

К опытам с патиной и малахитом мы еще вернемся - в разделе "Приятное с полезным ". А сейчас снова обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты?

Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет. Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыря-хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом NH 4 OH, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря, А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его "жало" окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

Металлы не очень удобны для опытов: эксперименты с ними требуют, как правило, сложного оборудования. Но некоторые опыты можно поставить и в домашней лаборатории.

Начнем с олова . В хозяйственных магазинах бывают иногда палочки металлического олова для пайки. С таким маленьким слитком можно проделать эксперимент: взять оловянную палочку двумя руками и согнуть - раздастся отчетливый хруст .

У металлического олова такая кристаллическая структура, что при изгибе кристаллики металла как бы трутся друг о друга, возникает хрустящий звук. Кстати, по этому признаку можно отличить чистое олово от оловянных сплавов - палочка из сплава при сгибании никаких звуков не издает.

А сейчас попробуем добыть олово из пустых консервных банок, из тех самых, которые лучше не выбрасывать, а сдавать в утиль. Большинство банок изнутри луженые , т. е. они покрыты слоем олова, который защищает железо от окисления, а пищевые продукты - от порчи. Это олово можно извлечь и использовать повторно.

Прежде всего пустую банку надо как следует очистить. Обычного мытья недостаточно, поэтому налейте в банку концентрированный раствор стиральной соды и поставьте ее на полчаса на огонь, чтобы моющий раствор прокипел как следует. Слейте раствор и промойте банку два-три раза водой. Теперь можно считать ее чистой.

Нам понадобятся две-три батарейки для карманного фонаря, соединенные последовательно; можно, как говорилось выше, взять выпрямитель с трансформатором или аккумулятор на 9-12 В. Каким бы ни был источник тока, к положительному его полюсу присоедините консервную банку (внимательно следите, чтобы был хороший контакт - можно пробить в верхней части банки небольшое отверстие и вдеть в него провод).

Отрицательный полюс соедините с каким-либо куском железа, например, с большим очищенным до блеска гвоздем. Опустите железный электрод в банку так, чтобы он не касался дна и стенок. Как его подвесить - придумайте сами, это нехитрая штука. Налейте в банку раствор щелочи - едкого натра (обращаться крайне осторожно! ) или стиральной соды ; первый, вариант лучше, но требует предельной аккуратности в работе.

Так как раствор щелочи еще не раз будет нужен для опытов, расскажем здесь, как его приготовить. Добавьте стиральную соду Na 2 CO 3 к раствору гашеной извести Са(ОН) 2 и прокипятите смесь. В результате реакции образуется едкий натр NaOH и карбонат кальция, т. е. мел, практически нерастворимый в воде. Значит, в растворе, который после охлаждения надо профильтровать, останется только щелочь. Но вернемся к опыту с консервной банкой. Вскоре на железном электроде начнут выделяться пузырьки газа , а олово с консервной банки станет понемногу переходить в раствор .

Ну а если надо получить не раствор, содержащий олово, а сам металл? Что ж, и это возможно. Выньте из раствора железный электрод и замените его угольным. Тут вам вновь поможет старая, отслужившая свое батарейка, в цинковом стаканчике которой сеть угольный стержень. Извлеките его и соедините проводом с отрицательным полюсом вашего источника тока. На стержне при электролизе будет оседать губчатое олово, причем если напряжение подобрано правильно, то произойдет это довольно быстро.

Правда, может случиться так, что олова с одной банки окажется маловато. Тогда возьмите еще одну банку, аккуратно нарежьте ее на кусочки специальными ножницами для металла и положите внутрь той банки, в которую налит электролит. Будьте внимательны: обрезки не должны касаться угольного стержня!

Собранное на электроде олово можно переплавить. Отключите ток, достаньте угольный стержень с губчатым оловом, положите его в фарфоровую чашку или в чистую металлическую банку и подержите на огне. Вскоре олово сплавится в плотный слиток. Не дотрагивайтесь до него и до банки, пока они не остынут!

Часть губчатого олова можно не переплавлять, а оставить для других опытов. Если растворить его в соляной кислоте - небольшими кусочками и при умеренном нагревании, - то получится раствор хлорида олова . Приготовьте такой раствор концентрацией примерно 7% и добавьте, помешивая, раствор щелочи чуть большей концентрации, около 10%. Сначала выпадет белый осадок, но вскоре он растворится в избытке щелочи. Вы получили раствор гидроксостанната натрия - тот самый, который образовался у вас вначале, когда вы начали растворять олово из банки.

Но если так, то первую часть опыта - перевод металла из банки в раствор - можно уже не повторять, а приступить сразу ко второй его части, когда на электроде оседает металл. Это сэкономит вам немало времени, если вы захотите получить побольше олова из консервных банок.

Свинец плавится еще легче, чем олово. В маленький тигель или в металлическую банку из-под гуталина поместите несколько дробинок и нагрейте на пламени. Когда свинец расплавится, осторожно снимите банку с огня, взяв ее за бортик большим надежным пинцетом или плоскогубцами. Расплав свинца вылейте в гипсовую или металлическую форму либо просто в песчаную лунку - так вы получите самодельное свинцовое литье. Если же и дальше прокаливать расплавленный свинец на воздухе, то через несколько часов на поверхности металла образуется красный налет - двойной оксид свинца ; под названием "свинцовый сурик " его часто использовали прежде для приготовления красок.

Свинец , как и многие другие металлы, взаимодействует с кислотами, вытесняя из них водород . Но попробуйте положить свинец в концентрированную соляную кислоту - он в ней не растворится. Возьмите другую, заведомо более слабую кислоту - уксусную . В ней свинец хоть и медленно, но растворяется!

Этот парадокс объясняется тем, что при взаимодействии с соляной кислотой образуется плохо растворимый хлорид свинца PbCl 2 . Покрывая поверхность металла, он мешает дальнейшему его взаимодействию с кислотой. А вот ацетат свинца Pb(СН 3 СОО) 2 , который получается при реакции с уксусной кислотой , растворяется хорошо и не препятствует взаимодействию кислоты и металла.

С алюминием мы поставим сначала два простых опыта, для которых вполне годится сломанная алюминиевая ложка. Поместите кусочек металла в пробирку с любой кислотой, хотя бы с соляной . Алюминий сразу же начнет растворяться, энергично вытесняя водород из кислоты - образуется соль алюминия А1С1 3 . Другой кусочек алюминия опустите в концентрированный раствор щелочи, например, каустической соды (осторожно! ). И снова металл начнет растворяться с выделением водорода. Только на этот раз образуется другая соль, а именно: алюминат натрия .

Оксид и гидроксид алюминия проявляют одновременно и основные, и кислотные свойства, т. е. они вступают в реакцию как с кислотами, так и со щелочами. Их называют амфотерными . Соединения олова , кстати, тоже амфотерны; проверьте это сами, если, конечно, вы уже извлекли олово из консервной банки.

Существует правило: чем металл активнее, тем он скорее окисляется, подвергается коррозии . Натрий , например, вообще нельзя оставлять на воздухе, его хранят под керосином. Но известен и такой факт: алюминий гораздо активнее, чем, например, железо , однако железо быстро ржавеет, а алюминий, сколько его ни держи на воздухе и в воде, практически не изменяется. Что это - исключение из правила?

Поставим опыт . Закрепите кусочек алюминиевой проволоки в наклонном положении над пламенем газовой горелки или спиртовки так, чтобы нагревалась нижняя часть проволоки. При 660 о С этот металл плавится; казалось бы, можно ожидать, что алюминий начнет капать на горелку. Но вместо того чтобы плавиться, нагретый конец проволоки вдруг резко провисает. Вглядитесь получше, и вы увидите тонкий чехол, внутри которого находится расплавленный металл. Этот "чехол" - из оксида алюминия Аl 2 О 3 , вещества прочного и очень жаростойкого.

Оксид тонким и плотным слоем покрывает поверхность алюминия и не дает ему дальше окисляться. Это его свойство используют на практике. Например, для плакирования металлов; на металлическую поверхность наносят тонкий алюминиевый слой, алюминий сразу же покрывается оксидом, который надежно предохраняет металл от коррозии .

И еще два металла, с которыми мы поставим опыт,- хром и никель . В таблице Менделеева они стоят далеко друг от друга, но есть причина, чтобы рассматривать их вместе: и хромом и никелем покрывают металлические изделия, чтобы они блестели, не ржавели. Так, спинки металлических кроватей покрывают обычно никелем, автомобильные бамперы - хромом.

А можно ли точно узнать, из какого металла сделано покрытие ? Попробуем провести анализ. Отколите кусочек покрытия от старой детали и оставьте его на воздухе на несколько дней, чтобы он успел покрыться пленкой оксида, а затем поместите в пробирку с концентрированной соляной кислотой (обращаться с осторожностью! Кислота не должна попадать на руки и одежду! ).

Если это был никель , то он сразу начнет растворяться в кислоте, образуя соль NiCl 2 ; при этом будет выделяться водород. Если же блестящее покрытие из хрома , то первое время никаких изменений не будет и лишь потом металл начнет растворяться в кислоте с образованием хлорида хрома СгСl 3 . Вынув этот кусочек покрытия из кислоты пинцетом, ополоснув его водой и высушив на воздухе, через два-три дня можно будет снова наблюдать тот же эффект.

Объяснение: на поверхности хрома образуется тончайшая пленка оксида , которая препятствует взаимодействию кислоты с металлом. Однако и она растворяется в кислоте, правда, медленно. На воздухе хром вновь покрывается оксидной пленкой. А вот у никеля такой защитной пленки нет.

Но в таком случае зачем же мы держали металлы на воздухе перед первым опытом? Ведь хром был уже покрыт слоем оксида! А затем, что покрыта была лишь наружная сторона, а внутренняя, обращенная к изделию, с кислородом воздуха в контакт не вступала.

С медью можно поставить несколько любопытных опытов , поэтому посвятим ей особую главу.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту , то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет , скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет . Значит, это диоксид углерода . В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, оксид меди .

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: Сu 2 СО 3 (ОН) 2 (дигидроксид-карбонат меди ). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода , и пары воды. Зеленый налет называют патиной . Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит .

Обратим внимание на почерневшую медную проволоку . Нельзя ли вернуть ей первоначальный блеск без помощи кислоты? Налейте в пробирку аптечного нашатырного спирта , раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь , вода и азот . Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет . Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт . Насыпьте в пробирку немного нашатыря - хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря. А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии . Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его "жало" окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта ) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция : медь восстановилась, а этиловый спирт , содержащийся в одеколоне, окислился до уксусного альдегида . Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

Медный купорос - вещество, которое благодаря красивому ярко-синему цвету идеально подходит для выращивания кристаллов. Их можно подарить своим близким или использовать в качестве элемента декора. В любом случае они никого не оставят равнодушным, а процесс изготовления может стать по-настоящему увлекательным. Итак, как же вырастить кристалл из медного купороса?

Подготовительные мероприятия

Медный купорос можно приобрести практически в любом хозяйственном магазине. Он активно применяется в сельском хозяйстве для борьбы с вредителями. Однако не следует забывать о том, что это вещество является токсичным. При работе с медным купоросом в домашних условиях обязательно используйте резиновые перчатки и не допускайте его попадания в пищевод и на слизистые оболочки. По окончании работ тщательно мойте руки в проточной воде.

Из медного купороса можно вырастить настоящее чудо, однако в процесе изготовления не забывайте о технике безопасности

Для того чтобы сделать кристалл, вам понадобятся:

  • вода - если есть возможность, используйте дистиллированную или в крайнем случае кипячёную. Сырая вода из-под крана категорически не подходит из-за содержания в ней хлоридов, которые вступят в реакцию с раствором и ухудшат его качество ;
  • медный купорос;
  • стакан;
  • проволока;
  • нить из шерсти - проследите, чтобы она была тонкой. Можно использовать длинный волос. Кристаллы сульфата меди прозрачны, и нитка не должна просматриваться сквозь них.

Помещая затравку в ёмкость с раствором, следите, чтобы она не соприкасалась со стенками или дном сосуда. Это может нарушить процесс роста кристалла и его структуру.

Фотогалерея: варианты кристаллов, выращенных своими руками

Можно вырастить один крупный кристалл Экспериментируя с температурой и другимим параметрами, можно добиться разной формы и размеров Иногда получается много мелких кристалло С подсветкой кристалл выглядит особенно эффектно Кристаллы вытянутой формы хорошо использовать в составе композиций

Инструкция по выращиванию кристалла

Существует две технологии выращивания кристаллов из медного купороса.

  1. Если вы не хотите долго ждать, то можете воспользоваться быстрым способом. По времени это займёт около недели, а в результате вы получите множество небольших кристаллов, закреплённых один на другом, будто колония ракушек-мидий.
  2. Второй метод более продолжительный. Он поможет вам вырастить крупный цельный кристалл, похожий на драгоценный камень.

Но оба они основаны на работе с насыщенным раствором вещества.

Обратите внимание! Чем выше температура воды, тем быстрее в ней растворяется медный купорос. Но при достижении жидкостью +80С° последующее нагревание никак не влияет на растворимость солей.

Быстрый способ

  1. Возьмите стакан или банку объёмом 500 мл, добавьте 200 г сульфата меди и залейте их 300 мл воды. Поставьте ёмкость на песчаную баню и начинайте разогревать, постоянно помешивая. Кристаллы медного купороса должны полностью раствориться.

    Тщательно растворите медный купорос в тёплой воде

  2. Уберите посуду с песчаной бани, поставьте на плоскость с прохладной поверхностью, например, керамическую плитку. Раствор должен немного остыть. Теперь в него нужно поместить затравку. Ею послужит кристаллик сульфата меди, который нужно выбрать предварительно - самый крупный и ровный.

    Поместите затравку в раствор

  3. Проследите, чтобы затравка не соприкасалась с внутренними поверхностями стакана. Даже если кристаллик растворится, не переживайте, - это не имеет значения. Охлаждаясь, насыщенный раствор отдаёт соли, которые оседают на нитке. Самое большое количество купороса сосредоточится на дне посуды, поскольку именно в этом месте стакан контактирует с прохладной поверхностью.

    Насыщенный раствор купороса начнёт образовывать кристаллы на поверхностях

  4. Извлеките нитку с образовавшимися кристаллами из ёмкости с раствором. Повторите процедуру: поставьте стакан на баню из песка и подогрейте так, чтобы осадок растворился. Отключите нагрев. Не снимая посуды с бани, накройте её подходящей по диаметру крышкой (например, чашкой петри) и дайте раствору немного остыть.

    Нить с первыми кристаллами

  5. Поместите нитку с кристаллами в раствор, закрепите её так, чтобы она не соприкасалась с дном и стенками. Накройте ёмкость и оставьте на ночь. Утром вы обнаружите в стакане большую гроздь прекрасных кристаллов необычной формы.

    Такой кристалл у вас может получиться через сутки

  6. Вы можете попробовать придать скоплению кристаллов определённую форму. Для этого нужно вместо нити использовать проволоку . Согните её в виде квадрата, круга, сердечка или звезды. Проволока станет прочным устойчивым каркасом для будущего фигурного кристалла. Если при этом вам понадобится ограничить рост некоторых граней, смажьте их вазелином или жиром.

Выращивая кристаллы сульфата меди быстрым способом, вы можете не беспокоиться о затравке: можно и вовсе обойтись без неё. Осадок легко закрепится на нитке.

Второй способ

В этом случае вы сможете вырастить крупный кристалл сульфата меди, однако это займёт гораздо больше времени. Кроме того, в отличие от первого способа, выбор затравки принципиально важен. К тому же вам придётся следить, чтобы к ней не прилипали мелкие кристаллики.

Чем крупнее и ровнее будет выбранный из общей массы кристаллик медного купороса, тем красивее получится конечное изделие.

Вам понадобятся 200 г тёплой воды и около 110 г медного купороса.

Инструкция по изготовлению:

  • смешайте купорос и воду в подходящей посуде (стакане или банке), оставьте на сутки. Периодически помешивайте: активное вещество должно полностью раствориться. После этого отфильтруйте раствор через вату или специальную фильтровальную бумагу. Оставшийся на поверхности фильтра осадок можно высушить и использовать снова при необходимости;
  • полученный раствор залейте в чистую ёмкость;
  • выберите кристаллик для затравки, привяжите его к нити (волосу). Второй конец нитки закрепите на палочке, положите её горизонтально на ёмкость. Затравка должна опуститься в раствор в строго вертикальном положении. Посуду накройте кусочком ткани, чтобы внутрь не попадала пыль;

Обязательно накройте ёмкость с раствором и затравкой кусочком ткани

Во время работы вы можете столкнуться с некоторыми трудностями. Их несложно преодолеть, придерживаясь простых правил.


При воздействии воздуха кристалл медного купороса теряет часть влаги, выветривается и со временем разрушается. Чтобы избежать этого, храните его в плотно закрытой ёмкости в прохладном месте. Специалисты советуют покрывать его бесцветным лаком, - это создаст надёжную защитную плёнку.

Как вырастить кристалл из медного купороса в домашних условиях (видео)

Выращивание кристаллов медного купороса - занятие долгое, оно требует внимания и терпения. Однако полученный результат обязательно вас порадует. Поделитесь с нами в комментариях вашим опытом. Удачи вам!